Big impact on a high hazard

Features
- Training Requirements
- Ontario’s Fall Prevention Strategy
- Fall Protection for Sloped Roofers
- Wheel-off Incidents
- Trenching Hazards
- Arc Flash Protection
- COR™ Profiles—Entegrus and Winroc-SPI Awareness Campaigns

A specialized approach to health and safety
When a rubber tire becomes overheated, a chemical reaction can cause a rapid increase in pressure inside the tire. This is called pyrolysis. As the heat and pressure increases, the rubber in the tire begins to deteriorate. At a certain point, the tire can explode.

**Identify controls**

- Avoid using a heat source on tires if possible. If that’s not possible, deflate and unseat the tire from the rim or prop the tire seating open with a metal object, such as a tire iron, before applying heat. When you’re done, let the tire cool to a normal temperature and inspect the inside of the tire for deterioration before reseating it.
- If a tire has been heated, it’s safer to assume pyrolysis is occurring and take precautions. Isolate the tire for 24 hours and keep people 200 m (650 ft) away. After 24 hours, take the tire off the rim and inspect it for deterioration or damage.
- If you suspect that pyrolysis may have started in a tire on a vehicle due to overheated brakes, fire, or electrical contact, isolate the vehicle from passersby and emergency personnel. If practical, drive the vehicle to a remote area of a parking lot. Walk away from the vehicle in the direction of the front or back rather than the side to avoid the explosion zone.
- Inflate tires inside a safety cage if practical. Note that some safety cages will not protect you from smaller projectiles.
- Inflate heavy-duty truck tires remotely using a clip-on air chuck. Keep at least 3 m (10 ft) away, even if the tires are in safety cages.
- When inflating a tire, face the tread rather than the rim to avoid the explosion zone.

**Explain dangers**

Pyrolysis can occur whenever heat is applied to a tire. Examples include:
- Heating lug nuts with a blow torch
- Overheating brakes
- Using aerosol tire inflators
- Welding on or near tires
- Contacting electrical sources (e.g., overhead powerlines or lightning).

Once this chemical reaction starts, it can continue on its own even after the heat source is removed. Pyrolysis can last for seconds or hours. There is no sign that it’s taking place until the tire explodes.

The pressure inside the tire can reach over 7,000 kPa (1,000 psi) by the time an explosion occurs. Anyone standing near the explosion is at risk of serious injury or even death.

Pyrolysis can occur when the temperature inside the tire is as low as 185°C. It does not require oxygen, so it can happen in nitrogen-filled tires.

A tire can explode even if it’s not sealed on the rim. During the final seconds of the reaction, there is a rapid burst of energy that can re-seal loose tires.

Take extra caution when working around heavy-duty truck tires. The pressure can build up to higher levels than in tires for passenger vehicles, resulting in a larger explosion.

**Demonstrate**

Ask workers if they have been in a situation where pyrolysis might have occurred.

Point out any current practices at your workplace that could cause tire pyrolysis. Discuss ways to reduce it.
Do you have the required training to work in construction? ................................................................. 4
Big impact on a high hazard: Ontario’s strategy to eliminate falls from heights ......................... 5
Fall protection for sloped roofers .................................................. 6
Don’t let the wheels come off.............................................. 8
Entegrus: A COR™ leader .................................................. 10
Don’t dig yourself into a hole......................................... 12
Electrical injuries can happen in a flash ................................. 14
Suppliers jumping on board with COR™ .......................... 16
IHSA aims to raise awareness with spring advertising campaigns .................................................. 18

On the cover...

Brian Barron (pictured), a Project Manager with Ontario’s Ministry of Labour (MOL), demonstrates fall protection for sloped roofers. Read about Ontario’s strategy to eliminate falls from heights in our interview with CPO George Gritziotis.
Do you have the required training to work in construction?

Health and safety training is important for workers in all sectors. But it’s especially important for those involved in high-risk work such as construction. Over the past 5 years, 97 construction workers in Ontario have lost their lives on the job, over 1,500 have suffered critical injuries, and over 22,000 have suffered lost-time injuries.*

Health and safety legislation is put in place to protect workers. Too often, however, workers do not have the training required by law. They may not even realize they need it. And employers may not realize they have a duty to provide it.

Training gives workers the knowledge to recognize the hazards they face and do their jobs safely. It helps employers fulfil their duty to protect the health and safety of their workers.

To help raise awareness of the training required to work in Ontario construction, we have put together a Training Requirements Chart (W001). It outlines the training that workers must have for the type of work they’re doing and the hazards they may face.

Visit ihsa.ca/Products to download this chart.

*According to WSIB statistics for construction rate groups between 2011 and 2015.

What workers need to know

Ontario’s Occupational Health and Safety Act (OHSA) and Construction Projects regulation (O. Reg. 213/91) assign many responsibilities to a competent person or a competent worker. By definition, this means a person or worker who is qualified because of knowledge, training, and experience to either organize or perform the work.

If you are doing work that must be done by a competent person or competent worker, you MUST be trained!

What employers need to know

Under the OHSA and associated regulations, employers have a responsibility to:

- Provide information and instruction to workers to protect their health or safety (OHSA, s.25(2)(a)).
- Carry out training programs for workers, supervisors, and committee members as prescribed (OHSA, s.26(1)(l)).
- Ensure that workers and supervisors complete a basic occupational health and safety awareness training program (O. Reg. 297/13, s.1 and 2).
Ontario’s strategy to eliminate falls from heights

Last year we saw the introduction of new training requirements for workers who use fall protection systems. A Working at Heights Training Standard was put in place by Ontario’s Prevention Office as part of its strategy to change the tragic circumstances associated with working at heights.

Standardized training was a way to ensure that all workers learned to work safely at heights. It also helped increase awareness of the hazard and encouraged construction workers and their employers to make working at heights a safety priority.

Since the new training became mandatory on April 1, 2015, over 100,000 workers have been trained and Chief Prevention Officer (CPO), George Gritziotis, says that this is just the beginning. “This is a transformational initiative, something that we’ll be analyzing over a long period of time.”

Although it’s too early to establish an accurate and objective analysis of the trends, CPO Gritziotis is making sure that the importance of this initiative is being communicated as widely as possible.

The conversation around working at heights is at an all-time high, and not just among the trainers and the system partners. Contractors both large and small are aware and know it’s the law and they’re looking at ensuring that they’re in compliance with the law. So this has been a tremendous way to impact a high hazard.

Through a multi-pronged approach that includes the continuation of radio advertising, a residential campaign targeting roofers, and residential enforcement blitzes, every effort is being made to lower the risk of this high hazard work activity.

And although the awareness that has been achieved through this campaign is encouraging, CPO Gritziotis is quick to point out that it’s not just about raising awareness and reducing the injuries and deaths caused by falls from heights.

The ultimate goal of all of these coordinated campaigns is to put an end to falls from heights across all sectors, not just construction.

Through our operations side, we’re going to be coordinating 20 targeted fall inspection blitzes between May and June, focusing not just on falls in construction—we’re also going to be looking at industrial workplaces and mining workplaces as well.

The unfortunate reality behind this massive undertaking is that the message is still not getting through to those who are most at risk.

Last year in Ontario, 10 construction workers died from falls. That’s more than half the total number of fatalities for the entire construction sector sector (17 construction workers died in 2015).*

With numbers like that, coupled with the devastation caused by any workplace fatality, you can be sure that the Prevention Office will continue to make fall prevention a focal point of its health and safety strategy.

The data is what drives it. We know that for construction, tragically, falls are one of the biggest reasons why a worker is injured, or will lose their life. And when we look across all sectors, not just construction, it’s in the top three! So it will continue to be a priority until we eliminate it as a cause of injury or fatality.

*According to traumatic fatality statistics from Ontario’s Ministry of Labour.
Fall protection for sloped roofers

Working on a sloped roof is one of the most dangerous jobs in construction. Just a small slip or loss of balance can lead to a life-altering injury or even death.

Whenever roofers are exposed to a fall of more than 3 metres (10 feet) off the ground, they must be protected by a fall protection system and trained how to use it properly.

Training

In Ontario, sloped roofers must have training to work at heights. If you received your training before April 1, 2015, you have until April 1, 2017, to complete a working at heights training program that has been approved by the Chief Prevention Officer. However, it is highly recommended that you take the new training before then.

An approved course will include information on hazard recognition and safe work procedures as well as a practical component showing how to use fall protection equipment.

Safe work procedures

Step 1: Wearing the proper equipment

The proper equipment for working on a sloped roof generally includes the following.
1. A CSA-approved full-body harness connected to a lanyard
2. A CSA-approved lanyard connected to a rope grab
3. A CSA-approved rope grab connected to a lifeline
4. A CSA-approved lifeline connected to an anchor point.

Step 2: Getting onto the roof using a ladder

Although falls from ladders are common in construction work, a ladder can be a safe means of access and egress if you follow proper safety procedures. However, you should not work from a ladder. It is not a work platform.

- Inspect ladder components such as rungs and hooks for damaged or defective parts before using it.
- Secure the ladder at the top and bottom.
- Set up the ladder at a slope of at least 3-to-1 but not more than 4-to-1 (one foot back for every 3 or 4 feet up).
- Make sure the ladder extends at least 90 cm (3 ft) above the access level of the roof.
- Keep the areas at the top and bottom of the ladder clear of debris.
- Maintain three-point contact when climbing up or down a ladder. (That’s two hands and one foot or two feet and one hand on the ladder at all times.)
• Never carry tools or material up or down the ladder. Instead, use a tool belt and hoist materials up by rope.
• If overhead powerlines are close to the work area, use a non-conductive type of ladder, such as a fibreglass one.

Step 3: Installing anchors
If you’re using a fall protection system on a sloped roof, you must be tied off at all times. Finding an anchor point to tie off to can seem like a challenge. However, if you plan ahead and know what to do, there are several options.
• You can use roof peak anchors as your main anchor point. The problem is getting to the roof peak to install the anchors while still being tied off. One way to do this is to install temporary roof anchors and tie off to them along the way.
• On new homes, some builders leave a hole in the sheathing near the roof peak so that you can tie off to the top chord of the roof truss.

Depending on the size of the roof, you may have to install several temporary anchors before you reach the roof peak. Make sure to install your anchors correctly by using the proper screws and following the instructions in the manufacturer’s guide. If you’re not sure about something, ask for help or advice.

On most homes, you will need multiple anchor points to prevent a swing-fall hazard. Make sure to tie off to anchor points that are at a height and location to prevent you from swinging and striking a lower level if you fall.

Step 4: Working on the roof
If you are working above 3 m (10 ft), you must be protected from a fall at all times. For roofers, that means being tied off from the time you leave the ladder until you get back on the ladder.

If you have to move from one lifeline to another, use a Y-lanyard. It has two places to attach to a lifeline, so it will allow you to be tied off at all times.

Step 5: Getting off the roof
Getting off the roof while remaining protected from a fall can be difficult because the peak anchor has to be removed. This will happen on every job, so there should be a clear procedure to follow.

Find a method that works best for your situation and make a plan for getting off the roof before you start the work. For instance, there may be an appropriate anchor to tie off to at ground level. Or you can use the same method you used to get onto the roof, just in reverse. Remember to remove any temporary anchors on the way down.

How IHSA can help
For more information on this topic, visit ihsa.ca/roofing and download the best practices document Fall Protection on Sloped Roofs (W207).
By law, a commercial motor vehicle or trailer must be inspected daily before it is driven (O.Reg. 199/07, s.6). This daily pre-trip inspection must include things such as load security and mechanical fitness of the vehicle. A schedule of every system and component that must be inspected can be found in the Commercial Motor Vehicle Inspections regulation (199/07).

Other measures that have been introduced to prevent wheel-offs are:
- An absolute liability law for wheel separations
- Specialized training for technicians who work with wheel installations
- More on-road inspections by specially trained police and enforcement officers
- Fines for wheel separations ranging from $2,000 to $50,000.

What you can do
Wheels come off for a number of reasons such as axle problems, hub separations, and fastening failures. When a wheel separation occurs, the inspection and maintenance procedures should be reviewed in detail to find the root cause of the problem.

Even if there is a near miss, such as when a mechanical problem causes a wheel to almost come off, the cause should be investigated. Finding out if there is a weakness in the maintenance and safety review process can prevent future wheel separations.

As best practice, conduct regular risk assessments and inspections to discover what the hazards are, what is being done to reduce the hazard, what the consequences might be if it happens, and what could have been done differently to prevent it from happening.
A wheel coming off a vehicle can be disastrous for the operator or for anyone nearby. A set of dual wheels with a brake drum can weigh more than 300 kg (660 lb). That weight, combined with the speed at which the wheels may be travelling, can cause severe damage to other vehicles and objects, as well as serious or fatal injuries to people in other vehicles.

A preventive maintenance plan can prevent that type of equipment failure before it happens. It will also increase productivity, limit downtime, extend the life of vehicles and equipment, and protect the safety of workers. Visit ihsa.ca/magazine to download the article “The power of preventive maintenance” in Volume 14, Issue 1, of IHSA.ca Magazine. It contains a checklist that you can use to set up a preventive maintenance plan for your company.

What’s being done
This topic is an important one in the transportation industry. In recent months, several of Ontario’s Fleet Safety Councils have invited speakers to their meetings to discuss the topic. At this year’s Fleet Safety Education Conference on September 30, Sgt. Scott Parker of the Ontario Provincial Police, Highway Safety Division, and Dave McDonald of Dave McDonald Bridgestone Commercial Solutions, will be discussing this issue.

The session will provide valuable insight into wheel-off incidents, common myths about wheel installation, and the root causes of wheel-offs. It will review the causes of past wheel-off situations, the preventive measures that can be taken, and technical information about the best maintenance practices.

To learn more about this presentation and the conference, visit fleetsafetycouncil.com

How IHSA can help
IHSA has several products that can help companies with commercial vehicles fulfill the legal requirements for daily pre-trip inspections. They include a Pre-Trip Inspection for Truck Sticker (S106), Did You Circle Your Vehicle Sticker (S029), and a Vehicle Inspection Report form (RF028). Visit ihsa.ca/Products to order these products.
Entegrus: A COR™ leader

As a utility firm that operates in southwestern Ontario, Entegrus provides power to approximately 40,000 customers in the communities of Chatham-Kent, Strathroy-Caradoc, Mount Brydges, Parkhill, Dutton, and Newbury.

Entegrus gained COR™ certification in Ontario last spring. Since then, the company has become an ambassador for the program. Entegrus had participated for years in another health and safety audit, IHSA’s ZeroQuest® program. They had been looking for something to follow their success with ZeroQuest®.

Earlier this year, Randy Klyn and Tracy Richmond from Entegrus took part in a workshop to mentor firms that are preparing for their audits. Here, they tell IHSA.ca Magazine a little about their experiences.

How did you first hear about the Certificate of Recognition (COR™) program?

*Randy:* We heard about the COR™ program from the Infrastructure Health and Safety Association (IHSA). We’ve been involved with IHSA through ZeroQuest® for years. After we had successfully completed our sustainability level for ZeroQuest®, our board members asked us what the next step would be for Entegrus in terms of health and safety. They were very clear that the company wasn’t done working on it. So COR™ was a natural next step for us.

What were your first impressions when you started doing the COR™ program?

*Randy:* Once we got into COR™, we found that it really helped us identify a lot of gaps in our program. By this point, we thought we had a perfect health and safety management system. COR™ showed us that we had a good system, but we still had areas that needed improvement. COR™ held us to a higher standard than we had experienced before.

How did COR™ compare to the work you had done for ZeroQuest®?

*Tracy:* COR™ is a true audit. For ZeroQuest®, you have to have a well-planned and well-documented program. When we gave the COR™ auditor our documents, she still needed more proof that the program really existed in practice. For example, she needed to see that:

- The staff had been trained and had the knowledge.
- The executive team participated in inspections and reviewed meeting minutes.
- Employees from all levels were actively involved in developing policies and processes.
Since we started COR™ early on, there weren’t many other companies that had already gone through the process and that we could turn to for help or advice. That’s not really the case now, so industry networks can also be great resources.

Tracy: Yes, the COR™ auditor workshop that we participated in earlier this year was a great event. Companies that have gone through the process, like ours, described their experiences and provided advice and mentorship to those doing it now. Presenters provided practical information like how to fill out the internal audit forms, which is something many people struggle with. I wish we’d had a resource like this when we were starting out.

For more information about Entegrus, visit their website at entegrus.com. For more information about the COR™ program and available resources for registered firms, visit ihsa.ca/COR.
Trenching is a high-risk work activity in Ontario. Workers continue to be seriously injured or killed because proper procedures were not put in place or followed.

Last summer, the Ontario Ministry of Labour (MOL) conducted a two-month blitz on trenching hazards. MOL inspectors made 994 field visits to 862 workplaces and issued 1,683 orders—151 of which were stop-work orders.

These were the most frequent issues they found:
- Trenches that were 1.2 m (4 ft) or deeper did not have the proper support systems to prevent the walls from collapsing.
- Material, excavated soil, and equipment was not kept at a safe distance from the upper edge of the trench wall.
- Workers were not wearing hard hats to protect against falling debris.
- Workers did not have a safe way to enter or exit the trench (e.g., a ladder).
- Written emergency procedures were not posted at the project.

Legislation
A trench is a type of excavation where the depth of the hole exceeds the width. The health and safety requirements for trenching can be found in the Excavations section (Part III) of the Construction Projects regulation (213/91, s. 222 to 242).

The legislation defines the different soil types. Each type has different shoring and timbering requirements to prevent the trench walls from collapsing. Some trenches may require an engineered, hydraulic, or prefabricated support system designed by a professional engineer.

Soil types
The type of soil in the trench will determine its strength and stability. Identifying soil types requires knowledge, skill, and experience. Even hard soil can contain faults that make it unstable when excavated. Be aware that soil types and conditions can change within a short period of time (due to weather conditions) or over short distances.

Cave-ins
Even after you determine the soil type, other factors can affect the stability of trench walls. These include moisture, vibration, weather, surcharge (heavy loads placed near the trench), previous excavation, and being too close to existing foundations.

There are three basic methods of protecting workers against trench cave-ins:
1. Sloping
2. Trench boxes or shields
3. Shoring.
Sloping
Sloping can reduce the risk of a trench collapsing by cutting back the walls at specific angles, depending on the soil type. Sloping is also used with shoring or trench boxes to cut back any soil above the protected zone.

Type 1 and 2 soils require walls to be sloped at a 45-degree angle beginning 1.2 m (4 ft) above the bottom of the trench. This works out to 1 m back for every 1 m up (i.e., a 1-to-1 gradient).

Type 3 soil also requires a 1-to-1 gradient, but from the bottom of the trench.

Type 4 soil requires a 1-to-3 gradient from the bottom of the trench. That's 3 m back for every 1 m up.

Trench boxes or shields
These are prefabricated systems made of aluminum or steel that are placed inside the trench. They do not provide support for the trench walls, but they will protect workers from a cave-in.

Design drawings and specifications for these systems must be done by a professional engineer and kept on site.

Shoring
Shoring is an engineered support system that "shores up" the trench walls. It consists of a sheathing material (typically wood, aluminum, or steel) with a support system typically made with posts, wales, and struts or an internal frame support system.

Safe work practices
- Never work alone in a trench.
- Always have a ladder or other safe way to enter and exit a trench. Ladders must be securely tied off at the top and extend at least 1 m (3 ft) above the shoring or trench box. Keep the top and base of the ladder free of debris and puddles of water.
- Keep trenches dry. If required, use a pump and wear rubber boots.
- Keep a level area 1 m from the upper edge of each trench wall clear of equipment, excavated soil, and building materials. This will prevent material and equipment from falling into the trench. Also, the weight can put pressure on the trench wall, causing it to collapse.
- Use barricades, barriers, or signalers to help equipment operators stay clear of trenches. This will protect workers from being struck by moving machinery.
- If a person could fall into a trench that is more than 2.4 m (8 ft) deep, provide a barrier at least 1.1 m (42 in) high at the top.
- Never enter a trench deeper than 1.2 m (4 ft) unless the walls are sound, made of solid rock, properly sloped or shored, or protected by a trench box.
- Wear a hard hat and eye protection to prevent injuries from falling and flying objects.
- Ensure that all gas, electrical, and other services around the excavation area are located and marked. Most locates can be arranged by contacting Ontario One Call at on1call.com.
- If a utility service poses a hazard, it should be shut off. If it can’t be shut off, ask the utility owner to supervise the work.

How IHSA can help
Visit the Trenching and Excavation topic page on the ihsa.ca website. It contains safety information and links to products and downloadable resources.
Electrical injuries can happen **in a flash**

Can safety glasses protect you from arc flash?

Although safety glasses can prevent debris from flying into the eyes, workers in the electrical trades may also need to protect their eyes from electrical hazards such as arc flash. But is it safe to use only safety glasses to protect against this hazard?

When safety glasses were first adopted by the high-voltage electrical industry, they were promoted as “flash glasses”. This implied that they protected against arc flash. Even today, manufacturers may say glasses protect against this hazard.

In the electrical community, however, there is some debate about whether safety glasses protect workers from arc flash. Most often, safety glasses alone are NOT the best means of protection. To find the best solution, a risk assessment or safety analysis needs to be done about the specific type of work the electrical workers do and the kind of arc flash hazards they face.

**Arc flash hazards**

The *Electrical Utility Safety Rules* (EUSR) defines arc flash as “a dangerous condition associated with the release of energy caused by an electric arc”. The flash causes an explosive expansion of air and metal.
This can lead to the following hazards:
- Extreme heat
- Flying debris or shrapnel (e.g., molten slag and super-heated metal fragments)
- Concussive force or pressure wave
- Hot gases and vapour
- Dangerous sound waves
- Burst of ultraviolet light (UVA/UVB).

The development of national electrical safety standards such as CSA Z462-15: Workplace Electrical Safety and CAN/ULC-S801-10: Standard for Electric Utility Workplace Electrical Safety for Generation, Transmission, and Distribution has led to a greater understanding of arc flash hazards. And understanding these hazards is the key to finding the equipment that is best suited to protect against them.

**Protective equipment**

There are many types of safety glasses and sunglasses, but none of them have been given an arc rating. Therefore, the wearer can't know what protection they offer against arc flash.

Even if safety glasses meet CSA Z94.3-07: Eye and Face Protectors or a standard that is based on comprehensive assessments of arc flash risk, it doesn’t mean that they offer protection against all electrical hazards equally. For example, only an arc-rated face shield or hood can protect against the heat from an electric arc.

Rule 113 of the EUSR states:

*When workers are required to perform work on exposed energized apparatus or where exposure to an arc flash hazard exists, all practical measures shall be taken to protect workers against the effects of electric arc flash.*

This rule requires employers to assess the risks of arc flash hazards to workers and to ensure that workers are adequately protected against them.

Much of the arc flash protective equipment is intended to protect against the heat generated during an unplanned arc flash. However, other factors must be considered when performing arc flash hazard assessments.

Arc flash protective clothing must meet an industry standard, such as ASTM F1506-15: Standard Performance Specification for Flame Resistant and Arc Rated Textile Materials. It must also have a label that gives the ATPV (Arc Thermal Protective Value) of the clothing, and it must reduce the risk of injuries from hazards identified by an arc flash risk assessment.

Face protective products (as defined by ASTM F2178) are intended to protect against heat. Therefore, face protection has ATPV values based on thermal energy values. It also provides protection from UVA/UVB depending on the design of the face protection. (See the manufacturer’s instructions and recommendations for more details.)

But even when workers are wearing face protection, they still need to wear safety glasses to reduce the risk of injury from flying debris, provide UVA/UVB protection, and prevent concussive injury to the eyes. The difficulty is that safety glasses do not have ATPV values and do not protect specifically against heat.

As technology advances, the industry may see safety glasses with ATPV values. But as yet, there are no testing standards and no manufacturing standards for safety glasses that provide ATPV values.

Safety glasses are an essential part of the safety equipment worn by electrical workers when they do electrical work or are exposed to arc flash hazards. However, they are not the only protective equipment needed. A comprehensive arc flash risk assessment based on the tasks workers perform is the best way to know what safety clothes, including eye, face, and skin protection, are needed for workers who are exposed to the danger of electrical arc flashes. It will certainly show when something more than safety glasses is required.

**How IHSA can help**

IHSA offers a half-day Arc Flash Risk Assessment course at our training facilities throughout the year. IHSA staff can also travel to your facility, anywhere in Ontario, to deliver training.
Philip just celebrated his 10-year anniversary with Winroc-SPI. While he was in school learning to become a firefighter, he started working for a drywall company that was eventually acquired by them. With a larger company, he saw an opportunity to build a career as an occupational health and safety professional. “This was not on my radar, but I’m glad it worked out this way,” he said.

When Winroc-SPI decided to become the first supply company to pursue COR™ certification, Philip and his team welcomed the challenge. “Our operations live and breathe safety,” he said.

Safety is integrated into the decisions made day-to-day. For example, if a customer requests a delivery to the fifth floor of a new building, we ensure the proper equipment can be used to make the delivery safely, and we do a hazard assessment before the start of every delivery.

If Philip and his team foresee a possible safety problem, the delivery doesn’t happen until the risks are reduced.

Philip saw COR™ as an opportunity to find out how far the company had come with its health and safety program. When you’re working towards something—working hard at something—and you have an opportunity to measure yourself and see how you’re progressing, why not take that opportunity? That’s what the COR™ program offers.
We’ve worked diligently at building a safety program that’s growing and adapting. COR™ allows us to measure ourselves against a recognized standard to make sure that we are doing as well as we think we’re doing.

At the centre of Winroc-SPI’s health and safety program is a web-based reporting system used to record hazards that are identified, and how and when they are corrected. Workers and supervisors are encouraged to report hazardous conditions and near misses as they arise.

This reporting system allows for a high level of transparency across the company because everyone, from front-line staff to the president, can access it and see exactly what is being done while it is being done. The company uses the same program for its internal and external COR™ audits. “The whole system is driven by the workers and their operations,” said Philip.

While Philip saw COR™ mainly as an opportunity to measure Winroc-SPI’s safety management system, the company also saw COR™ as a way to attract business. It recognized early on that COR™ would have a significant effect on the construction landscape in Ontario.

“You see it with the Greater Toronto Airport Authority. The first page of their bid application asks about COR™. Then you’ve got the City of Toronto, TTC, and Metrolinx seeming to go in that direction as well,” said Philip.

As a supplier, Winroc-SPI doesn’t bid directly on large infrastructure projects. Instead it is invited on site by its customers, who are the subcontractors bidding on these projects. If the general contractors are required to be COR™ certified, it only makes sense that the suppliers they work with be COR™ certified as well.

By hiring a COR™ certified supplier, the contractor is getting a partner in safety and a cohesive working relationship. Work is done efficiently and professionally because everyone is on the same page.

The contractor knows that the delivery crews coming on site have a certain level of training, knowledge, and awareness. They also know that detailed health and safety documentation can be provided in a timely fashion if needed.

When we deliver material to a site, we’re operating heavy equipment, we’re working from heights, we’re hoisting material—we’re doing the same type of work and are exposed to the same hazards as the contractors. Our employees need the training to recognize and be aware of hazards during changing site conditions, just as contractors do. COR™ ensures they have all that.

As Philip explains, “We display our certification with pride.”
Why do you work safe? That’s the question IHSA asks in a recent advertising campaign aimed at changing the mindset of Ontarians when it comes to working safely. Answers to this question are shown in a series of ads that appear on Toronto Transit Commission (TTC) vehicles and on rink boards at arenas throughout Ontario. The ads will be seen on TTC vehicles for three months and will remain on rink boards in local arenas for a year.

The goal of this campaign is simply to remind people of what’s at stake when health and safety rules are not followed or not taken seriously. We hope that when people see the ads during their morning commute, at a weekend hockey game, or at a community event, they will remember the importance of workplace safety. Everyone deserves to return home healthy and safe at the end of their workday.

At the same time, IHSA launched a province-wide radio campaign, which is aimed at small businesses. The majority of firms in the industries that IHSA serves are small businesses and independent contractors. IHSA would like to engage their interest by having them visit IHSA.ca/smallbusiness. Here, they will find free IHSA tools and resources designed to meet their specific health and safety needs while saving them time and money.

The radio ads aired for five weeks from March 28 to April 30. In addition to encouraging listeners to visit the small business section of our website, the ads offered a free copy of IHSA’s Safety Talks manual (V005) to owners of small businesses. The next phase of this small business campaign will see ads placed online and in various trade and industry publications starting in the fall.

Visit IHSA.ca/news_events for a list of TTC routes, arenas, and radio stations where the ads for the two campaigns appeared.
Here's why I work safe

Keep your promise to work safe today.

IHSA proudly serves the construction, transportation, and electrical utilities industries. We train our members to work safely because they deserve to return home safe at the end of the day.

IHSA.ca
Work Safe for Life

Here's why I work safe

Keep your promise to work safe today.

IHSA proudly serves the construction, transportation, and electrical utilities industries. We train our members to work safely because they deserve to return home safe at the end of the day.

IHSA.ca
Work Safe for Life

Here's why I work safe

Keep your promise to work safe today.

IHSA proudly serves the construction, transportation, and electrical utilities industries. We train our members to work safely because they deserve to return home safe at the end of the day.

IHSA.ca
Work Safe for Life

Here's why I work safe

Keep your promise to those who count on you.

IHSA proudly serves the construction, transportation, and electrical utilities industries. We train our members to work safely because they deserve to return home safe at the end of the day.

IHSA.ca
Work Safe for Life
Keep Ontario roads safe for workers

Help IHSA spread the word. Download your free “I promised to...” artwork at ihsa.ca/stayfocused

Those who work on or near Ontario’s roadways are vulnerable to a number of hazards—especially those who work in proximity to drivers. For workers on foot, a busy road where passing vehicles are constantly on the move can be a very dangerous place.

It’s time to raise awareness of the health and safety hazards to workers who may be endangered by motor vehicle traffic.

Join IHSA and the Association of Electrical Utilities Safety Professionals (AEUSP) in spreading this important message across Ontario.

To spread the word, visit ihsa.ca/stayfocused to download your free high-resolution artwork or purchase vehicle magnets, stickers, decals, and smartphone wallets.

Artwork will be updated on a quarterly basis, so be sure to check back and get the latest advertisement.