Working in HIGH HAZARDS

Features
High-Hazard Work
Fall Protection Work Plan
Collision Investigations
Powerline Contact
Skid Steer Hazards
Annual General Meeting
Mobile Devices
Ladder Safety
Electrical Utility Safety Rules
Changes to OTM Book 7
Labour-Management Network
MOL Blitz Results
Working at Heights Update
WAH Training in Other Languages

A specialized approach to health and safety
A 26-year old woodcutter was using a chainsaw to remove limbs from the top of a fallen tree when the cutting chain struck the inside of his thigh. The worker was rushed to hospital but died from loss of blood. The investigation found that he had been pulling the saw towards himself and was not wearing leg protection (chainsaw pants).

Explain dangers

- Chainsaw kickback can occur when the chain becomes snagged and suddenly stops moving. The change in momentum causes the chainsaw to move in the opposite direction, back towards the operator.
- The chain runs at very high speeds, and the cutting blade is extremely sharp. Each tooth is designed to remove a quarter-inch chip of material.
- A chainsaw is extremely loud, and parts of it can become very hot.
- Chainsaws produce a lot of vibration, both from the engine and from the process of cutting.
- A chainsaw with a combustible engine produces toxic exhaust fumes.
- The gasoline-oil mixture used for chainsaws with combustion engines can catch on fire if it’s spilled while filling a hot engine.

Identify controls

Maintaining a chainsaw

- Always follow the manufacturer’s maintenance instructions for your specific chainsaw. Keep a copy of the owner’s manual on hand.
- Inspect the chainsaw before using it. Make sure that the guide bar is tight, the chain is snug, the machine is lubricated, and the teeth are sharp. Check the drive links, sprockets, chain catch, and cutters for damage. Run the saw at half throttle and apply the chain brake to make sure it works properly.
- Never use a chainsaw that has damaged parts.
- Never alter any of the safety features such as the chain brake, throttle trigger interlock,amped depth gauges, etc.
- Make sure the ratio of gas to oil meets the manufacturer’s recommendations (e.g., 50 to 1).

Wearing personal protective equipment

- Always wear eye protection that is CSA or ANSI-approved. A face shield may be required.
- Use gloves, a hard hat, CSA-approved safety boots, earplugs or ear muffs, and leg protection.
- Never wear loose clothing, unbuttoned jackets, flared sleeves and cuffs, scarves, tie strings, cords, chains, jewelry, etc. when operating a chainsaw.

Starting a chainsaw

- Keep everyone at least six feet away from you.
- Place the chainsaw on solid ground and secure it with one foot in the rear handle. Grasp the top handle with your left hand, apply the chain brake, and set the throttle lock. Pull the recoil handle towards your chest.
- Never “drop start” or “throw start” a chainsaw.
- Don’t let the cord snap back to the starter.
- Let the chainsaw idle for a minute or two to warm up.

Operating a chainsaw

- Hold the saw firmly with both hands and keep your feet firmly planted before you start to cut.
- Stand to the left of the saw and hold your left arm straight. Activate the throttle with your right hand.
- To prevent kickback, cut only one thing at a time. Use the bumper spike to rest the chainsaw on top of what you’re cutting and allow the sharp teeth of the chain and the power of the engine to do the cutting. Don’t force it.
- Bring the saw to full operating speed before starting the cut. If you feel resistance or you need to apply extra pressure in order to cut, the chain may be dull. Using a dull chain is not only a safety hazard, but it also increases your risk of developing hand-arm vibration syndrome (HAVS).
- Never pull the chainsaw blade towards you.
- Don’t operate a chainsaw above shoulder height.

Transporting a chainsaw

- Apply the chain brake and shut the motor off before setting the chainsaw down or moving it long distances.
- Allow the chainsaw to cool off.
- Use a bar guard to cover the chain when carrying or transporting it.
- Carry the saw facing downwards and to your side with the bar point behind you.
- During transit, use a carrying case if possible and make sure it’s secured to prevent it from moving.
- Never transport a chainsaw in the passenger’s seat of a vehicle.
- Where possible, transport the chainsaw in a well-vented cabinet or in the open air.

Demonstrate

Using the manufacturer’s operating instructions, review the maintenance procedures with your workers.

Show workers the proper way to start the chainsaw and to hold it while cutting.
Contents

Making high-hazard work safe .. 4
Do you have a Fall Protection Work Plan? 5
Preventing MVIs through collision investigation 8
Equipment operators: Look out for powerlines 10
Putting the skids on skid steer hazards 12
IHSA Annual General Meeting ... 14
Mobile devices in the workplace ... 18
Take your ladder safety to new heights 20
100 years of Electrical Utility Safety Rules 22
OTM Book 7 has changed.. 23
IHSA’s Labour-Management Network aims to make high-hazard work safer ... 24
MOL enforcement blitz results .. 26
New training requirements for working at heights 27
Working at heights training is now available in 10 more languages 28

On the cover...
This issue is dedicated to high-hazard activities, such as working at heights, working on busy jobsites, operating vehicles and heavy equipment, and working near high-voltage powerlines.

Executive Committee
Mike Archambault Aecon Group Inc.
Tim Holdaway ... Midland Transport Limited
Joe Pessoa .. Toronto Hydro, CUPE Local One
Joe Redshaw International Union of Operating Engineers, Local 793

Electrical
Jack Dowding ... IBEW Construction Council of Ontario
Dean Gatien PowerTel Utilities Contractors Limited
Joe Pessoa Toronto Hydro, CUPE Local One
Mark Turney .. Veridian

Transportation
Michael Frolick Transpro Freight Systems Ltd. (Milton)
Tim Holdaway ... Midland Transport Limited
Brian MacDonald Teamsters (Ottawa)
Len Poirier .. UNIFOR Canada

General ICI
Mike Archambault Aecon Group Inc.
Bob Kerr Brick and Allied Craft Union of Canada

Heavy Civil & Aggregates
Darrin Husack ... ConDrain Group
Joe Redshaw International Union of Operating Engineers, Local 793

Mechanical
Tom Lachance TESC Contracting Company Ltd.
Don Schultz .. Millwrights Regional Council of Ontario

Residential
Claudio Mazzotta Drywall Acoustic Lathing & Insulation, Local 675
This issue of *IHSA.ca Magazine* is dedicated to high-hazard activities, such as working at heights, working on busy jobsites with many trades working in close proximity, operating vehicles and heavy equipment, and working on or near high-voltage powerlines.

“High hazard” is a term that describes much of the work many of you do every day, since the majority of firms that IHSA serves perform high-hazard activities. That’s why one of IHSA’s strategic goals is to reduce the injuries, fatalities, and diseases that accompany high-hazard work. The Ministry of Labour is also making high-hazard activities a strategic priority in its Integrated Health and Safety Strategy for Ontario.

Over the last two years, IHSA has produced special issues of *IHSA.ca Magazine* dedicated to topics such as working at heights, fall prevention, struck-by injuries, powerline contact, and motor vehicle incidents (MVIs). That’s because these are among the top causes of fatalities and serious injuries for IHSA member firms.

In 2013, falls were responsible for 25% of lost-time injuries (LTIs) and 45% of critical injuries, while struck-by objects accounted for 16% of LTIs and 19% of criticals.* In terms of fatalities, MVIs claimed the lives of 18 workers, while 10 workers died from falls, 6 workers died after being struck by material or equipment, and 4 died of electrocution.*

These may be just numbers, but they represent 38 hard-working Ontarians like you and me who didn’t return home safe from work at the end of the day. Even for those who did return home, their lives may never be the same if they suffered a serious injury.

However, IHSA believes that high-hazard activities do not have to be dangerous. There’s a lot that can be done to make high-hazard work safe. An example is in the utility sector. Among IHSA member firms, the lowest LTI rates in 2013 were in Rate Groups 833, 835, and 838 (Electric Power Generation; Oil, Power, and Water Distribution; and Natural Gas Distribution). These workers perform high-hazard activities, but systemic controls and prescriptive processes have greatly reduced the number of injuries and therefore the risk involved in this high-hazard work. That’s not just the hope, but the plan for all of IHSA’s Rate Groups—to make workers safe, especially those who work in high-hazard industries.

As expected, in this issue you will see articles that deal with falls, struck-by injuries, MVIs, and powerline contact, but you will also see articles about the distractions caused by cell phones, highlights of IHSA’s Annual General Meeting, results from recent MOL blitzes, and recent changes to the OTM Book 7. Also highlighted is the role played by IHSA’s Labour-Management Network in making high-risk work safer by developing safe work guidelines and by helping to raise awareness of health and safety in their communities.

Regardless of whether high-hazard activities are part of your daily work, it’s always important to stay focused, to follow safe work practices, and to be aware of your surroundings. In addition to the valuable information in this magazine, there are more resources available on the **Topics and Hazards** section of our website. There you’ll find web pages dedicated to high-risk hazards such as fall prevention and working at heights, struck-by hazards, motor vehicle incidents, electrical hazards, heavy equipment, cranes and concrete pumps, trenching and excavation, confined space, asbestos, and traffic control.

Statistics provided by the Workplace Safety and Insurance Board (WSIB).
Do you have a Fall Protection Work Plan?

Falls are still one of the leading causes of injury and death at work in many of IHSA’s rate groups. In 2013, falls were responsible for 25% of lost-time injuries (LTIs), 45% of critical injuries, and 10 fatalities. Compared with 2012, that represents an 11% increase in the number of LTIs from falls and twice the number of fatalities.

Obviously, more needs to be done to protect workers at heights. As an employer in Ontario, you are legally required to protect workers who are exposed to fall hazards. To help you do this, IHSA has developed a Fall Protection Work Plan. It’s a step-by-step guide for controlling fall hazards and is intended to offer guidance and instruction for workers using fall protection. It’s easy to follow and will help you choose the best method of fall protection that is available to you under the circumstances.

Recognizing and assessing the fall hazard

The first step is to recognize and assess the fall hazard. Identify any existing and potential hazards before work begins. Assess the likelihood and potential severity of the hazard and prioritize the hazards according to risk (Step 1).

Eliminating the fall hazard

The next step is to try to prevent a fall from happening (Step 2). This could involve:

• relocating the work to a place where the fall hazard does not exist (e.g., building a roof on the ground and hoisting it into place or moving an air-handling unit from near the edge of a roof to the centre)
• delaying the work until permanent safety features can be installed (e.g., permanent guardrails, walls, parapets, or other structural features)
• erecting a guardrail system, which prevents workers from falling off an open edge
• covering floor or roof openings so that workers cannot fall through them

• using an elevated work platform (EWP), that has permanent guardrails
• using a travel-restraint system, which allows workers to travel just far enough to reach the edge but not far enough to fall over.

Controlling the fall hazard

If you can’t eliminate the fall hazard, the next-best option (Step 3) is to implement controls such as:

• a fall arrest system, which will stop the fall before any part of the worker can hit the surface or an object below
• a safety net, which is installed around the perimeter of a building or at floor or roof openings to arrest a worker’s fall.

By allowing a worker to fall, there is an increased likelihood of injury. Also, if you choose this option, you must have a plan to rescue a suspended worker whose fall has been arrested (Step 7).

Creating the Fall Protection Work Plan

Instructions for creating the Fall Protection Work Plan are listed below.

• The plan is to be prepared by the supervisor and workers (competent persons) most directly involved in the work.
• More than one control or elimination method can be selected for the work. For example, travel restraint can be used when guardrails are being installed.
• The plan should be approved by the management supervisor of the person who prepared it (Step 8).
• The plan should be read by all workers involved in the work. Workers can acknowledge that they have read the requirements and understand their responsibilities under the plan by signing a Worker Sign-off Sheet (Step 9).
• An emergency plan should be developed even if a fall rescue plan is not required.
• If the work situation changes and the Fall Protection Work Plan has to be amended, the changes should be communicated to all workers involved.
Fall Protection Work Plan

Company name ____________________________ Project ____________________________

Supervisor in charge ____________________________ Work location ____________________________

Estimated start date and duration ____________________________

Description of work __

Fall protection equipment __

Manufacturer’s reference material ___

Step 1: Identify the fall hazard.
(Provide a description.)

Step 2: Try to eliminate the fall hazard.

<table>
<thead>
<tr>
<th>Question</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Can the work be relocated to a place where a fall hazard does not exist?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Can the work be delayed until permanent safety features are installed?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Can a guardrail system be used? If Yes, consider the following:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Does it meet the strength requirements of O. Reg. 213/91, s. 26.3?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Is it no more than 30 cm (12 in) from the edge being protected?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Has it been installed according to the manufacturer’s recommendations?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- If it is made of wood, can it resist all loads that a worker may subject it to?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Can floor or roof openings be covered? If Yes, consider the following:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Does the cover meet the strength requirements of O. Reg. 213/91, s. 26.3 (2)?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Is it securely fastened?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Is it adequately identified as a cover?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Can an elevated work platform (EWP) be used? If Yes, consider the following:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Is the EWP on a level surface?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Is the surface capable of supporting its load?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Has the worker received fall protection training and been trained in the use of this specific EWP?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Can a travel-restraint system be used? If Yes, consider the following:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Is the system set up to prevent the worker from reaching the fall hazard?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Does the system meet the requirements of O. Reg. 213/91, s. 26.4?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Does the anchor point meet the requirements of O. Reg. 213/91, s. 26.7?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Have other fall hazards in the work area been considered? If not, you may need to use a fall arrest system.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Has the equipment been certified by the Canadian Standards Association (CSA)?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Has the equipment and system been inspected before use, as per the manufacturer’s instructions and CSA requirements?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Can scaffolding or pump jacks be used?</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

6 Ihsa.ca Magazine Vol. 14 Issue 3 ihsa.ca
Step 3: Take steps to control the fall hazard.
If you choose this option, you must have a fall rescue plan in place and the workers must be trained on it before work begins—it’s the law.

<table>
<thead>
<tr>
<th>Can a fall arrest system be used? If Yes, consider the following:</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Is a fall rescue plan in place to rescue a suspended worker? (See Step 7.)</td>
</tr>
<tr>
<td>- Has the worker been trained in fall protection and the specific fall arrest system being used?</td>
</tr>
<tr>
<td>- Does the fall arrest system meet the requirements of O. Reg. 213/91, s. 26.6?</td>
</tr>
<tr>
<td>- Is the anchor point located so that the lifeline is at a 90° angle from the edge? If not and the worker fell, they could swing and hit a wall or column or the lifeline could break as it slid across the edge.</td>
</tr>
<tr>
<td>- Does the anchor point meet the requirements of O. Reg. 213/91, s. 26.7?</td>
</tr>
<tr>
<td>- Have horizontal lifeline systems been engineered? Have they been installed according to the engineer’s requirements?</td>
</tr>
<tr>
<td>- Has the fall arrest equipment been certified by the CSA?</td>
</tr>
<tr>
<td>- Has the equipment or system been inspected before use, as per the manufacturer’s instructions and CSA requirements?</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Can a safety net be used? If Yes, consider the following:</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Is a fall rescue plan in place to rescue a suspended worker? (See Step 7.)</td>
</tr>
<tr>
<td>- Do the safety nets meet the requirements of of O. Reg. 213/91, s. 26.8?</td>
</tr>
<tr>
<td>- Have the safety nets been installed according to the manufacturer’s instructions?</td>
</tr>
<tr>
<td>- Have the safety nets been inspected according to the manufacturer’s instructions?</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Can any other controls be used? If Yes, describe them:</th>
</tr>
</thead>
</table>

Step 4: Make a diagram of the location of the fall hazard and include any relevant details.

[Diagram]

Step 5: Describe the system setup or work procedures.

Step 6: Calculate the fall clearance.

Step 7: Create a fall rescue plan to rescue a suspended worker.

<table>
<thead>
<tr>
<th>Rescue equipment:</th>
<th>Rescuers’ names:</th>
</tr>
</thead>
</table>

Step 8: Get approvals.

Prepared by ____________________________

Approved by ____________________________ Date approved ____________________________

Step 9: Create a Worker Sign-off Sheet.
Workers need to acknowledge that they have read the requirements and understand their responsibilities under the Fall Protection Work Plan.
Preventing MVIs through collision investigation

Motor vehicle incidents, or MVIs, are the leading cause of occupational injury and death in the sectors IHSA serves. In 2013, 18 workers from IHSA member firms were killed in MVIs. A collision is considered an MVI if it occurs on a public road or highway but not on private property. They aren’t just a workplace safety issue—MVIs can affect everyone on the road.

The primary reason for investigating the causes of a collision is to help prevent similar collisions in the future. Collisions rarely have a single cause. Work environment, job constraints, and the driver’s skill and experience can all play a part. Each of these factors must be examined to determine what role they played in causing the MVI.

Once the causes have been established, precautions can be taken to prevent a recurrence. Investigators must always keep in mind that effective collision investigation means fact finding, not fault finding.

Reconstruct the scene
When it comes to investigation, a key component is to reconstruct the scene of the collision. At the 2014 Fleet Safety Council Educational Conference, retired IHSA trainer Carmine Benedetti led a workshop on collision investigation. He described some of the critical components of evidence gathering, including the use of a crash-investigation instrument developed by Northwestern University.

NU’s Metric Traffic Template is a see-through plastic instrument used by crash investigators, claims adjusters, and other professionals to:
• create scale maps of traffic collisions
• calculate speeds from skidding distances
• estimate stopping and acceleration distances
• change kilometres-per-hour to metres-per-second (metric model)
• measure angles and grades
• illustrate the arrangement of parked vehicles.

Inspect the site
A collision investigation can consist of many elements, but it usually starts with an inspection of the collision site. Measurements are taken of evidence left by the vehicles, such as point of impact, final resting position, skid marks, scrub marks, and gouge marks.

A field sketch is a free-hand map of the scene or site of the collision. It provides a bird’s-eye view of the collision scene. These sketches also include measurements taken at the scene. This sketch can be created with the Traffic Template but should also include the following critical information:
• Be extra careful at intersections—most urban motor vehicle collisions happen there.
• Avoid making unsafe lane changes.
• Slow down. Excessive speed is a major cause of MVIs.
• Don’t follow the vehicle in front of you too closely.
• Adjust your driving for poor weather and road conditions.
• Check your vehicle for any equipment malfunctions before you drive it.

Inspect the vehicle

Vehicle inspections are another typical part of a collision investigation. This would usually include measuring the amount of damage to the vehicles. This information will be useful if a collision reconstruction is performed. The mechanical components of the vehicles, such as brakes, steering, tires, suspension, lights, etc. may be inspected and tested to determine if their condition was a factor in the collision. The investigation might also include looking at drivers’ qualifications, auditing logbooks, or reviewing other materials related to motor carrier compliance.

These facts and information can be vital pieces of a collision investigation that can help you analyze the causes of a collision and reduce the number of MVIs your company has in the future.

Tips for avoiding a collision

• Be extra careful at intersections—most urban motor vehicle collisions happen there.
• Avoid making unsafe lane changes.
• Slow down. Excessive speed is a major cause of MVIs.
• Don’t follow the vehicle in front of you too closely.
• Adjust your driving for poor weather and road conditions.
• Check your vehicle for any equipment malfunctions before you drive it.

• Date, time, and location
• Weather and road information
• Vehicle licence information (including licence endorsements or restrictions)
• Name of investigator who drew the sketch
• Information on the vehicles involved (colour, make, model, etc.)
• Identity of driver(s) and owner(s), including name, age, addresses (home and work), and telephone numbers
• Insurance information (name, address, policy number, etc.)
• Names and contact information of all passengers involved
• Any knowledge that a passenger had of the driver being impaired before entering the vehicle (this includes not only intoxication but also fatigue, exhaustion, or any other physical condition that may have led to the collision)
• A list of safety devices installed and used
• Description of the road and road conditions
• Description of traffic conditions
• Mechanical description of the vehicles involved.

Photographs are also useful for recording the collision scene. They can become part of a more accurate record of the incident scene.
Copies of these written procedures must be given to every employer on the project. Written notification of the electrical hazard must also be given to equipment operators before work begins.

Signallers

A competent worker must be designated as a signaller to warn the operator when any part of the equipment, load, or hoist line approaches the minimum allowable distance from an overhead powerline. Signallers must be in full view of the operator and must have a clear view of the equipment, the powerline, and the equipment’s intended path of travel. They must be dedicated only to

Equipment operators: Look out for powerlines

Contact with overhead powerlines is a common hazard for operators of heavy equipment such as concrete pumps, boom trucks, dump trucks, backhoes, and cranes. Often these incidents are the result of a lack of awareness of powerline hazards and improper work procedures.

Overhead powerlines can carry thousands of volts of electricity to our homes and businesses. But coming into contact with them, even being close to them, can be fatal. On average, each year in Ontario, three people die and five are critically injured due to contact with overhead powerlines.† They are a high-risk hazard that must be treated with respect.

To protect equipment operators and workers on foot around the equipment from this hazard, employers must follow sections 181 to 195 of the Construction Regulation (213/91). These sections contain specific rules that must be followed when working near powerlines.†

Limits of approach

When equipment operates within reach of live overhead powerlines, written measures and procedures must be in place to ensure the equipment does not get closer than the minimum allowable distance (Table 1).
Warning signs and devices
Warning signs or devices must be placed in the area of the hazard so that at least one is always visible to equipment operators in any conditions that they may be working in (such as at night or in rain or fog). This warning can be a DANGER sign that meets the requirements of section 44 of the Construction Regulation. It’s a good idea to include the voltage of the powerlines on the sign. There should also be a warning sign at the operator’s station. This may be a sticker that comes with the equipment. Always check to make sure the sticker is legible.

Equipment manuals
The operating manual issued by the manufacturer of the equipment may contain instructions that are different from the legislation. If the manufacturer’s instructions are more stringent, they should be followed instead of the regulation (O. Reg. 213/91, s. 93).

Site set-up
If a jobsite is planned properly, powerline hazards can be reduced or eliminated. Proper planning can include:
• moving or de-energizing powerlines while work is being done
• ordering the proper-sized equipment for the site
• designating safe staging areas for the equipment to set up
• storing material far away from powerlines.

Never extend a boom over electrical wires, even if you can maintain a safe minimum distance.

The most powerful tool for preventing contact with powerlines is education. By making workers and employers more aware of the hazards associated with powerline contact and the ways to avoid it, both employers and workers can continue to make progress in reducing electrical contact injuries and fatalities. Visit the Electrical Hazards topic page at ihsa.ca for more information and products, including warning posters and stickers.

*Information provided by the Electrical Safety Authority.
†These sections do not apply to electrical workers who must work on or near electrical transmission or distribution systems. They must work in accordance with the Electrical Utilities Safety Rules (RB-ELEC).
If you’ve ever had to remove debris on a demolition site, or move gravel on an aggregates site, or dig foundations on a homebuilding site, chances are you’ve used a skid steer. These machines are incredibly versatile and highly manoeuvrable, but they can also be very dangerous. Anyone who operates a skid steer or works around one should be aware that this is a high-risk activity. Proper precautions must be taken to prevent a serious injury or a fatality.

Skid steer operators need to be aware not only of hazards that they are exposed to but also the hazards that they can cause for workers around them. Here are some of these hazards:

- Falls and rollovers (from instability and overloading)
- Striking workers and pedestrians
- Striking hidden obstacles
- Being struck by loader arms and attachments
- Being struck by falling materials
- Slips and trips
- Working around leading edges
- Exposure to fumes, noise, and vibration

The following safe practices can help operators prevent these hazards:

Know your machine

- Get the proper training and review the user manual before operating a skid steer.
- Perform regular safety checks and document your findings.
- Check all high-pressure hydraulics for leaks.
- Find the rated operation capacity (ROC) for the machine and never exceed it. Overloading can make a skid steer excessively front-heavy. This can cause instability and reduce handling response.
- Never remove the rollover protective structure (ROPS) from a skid steer. It’s there to protect you. And keep side screens in place. People have been crushed to death when they were caught between the loader arms and the skid steer frame on unscreened machines.
- Always use the seat belt and/or the seat bar.

Know your surroundings

- Use barriers or another method to cordon off your work area. That way, you can concentrate on your work without having to worry about other people in the vicinity.
- If you have to work near other people, make sure you know where the blind spots are on a skid steer. Make eye contact with anyone entering the area you’re working in, and turn off the machine if you need to have a conversation.
• Never lift, swing, or otherwise move a load over anyone.
• Watch out for uneven floors or for objects buried in the ground. If the machine hits them, it may stop suddenly.
• If working on an elevated floor, make sure the floor can support the weight of the machine.
• If working on an elevated slab, make sure bumpers or barriers are installed in front of all openings.
• If working near a trench, always stay a safe distance from the edge.

Use safe operating procedures
• When getting out of the machine, always turn your machine off first and have the bucket or attachment in its lowest position.
• Adjust your speed to suit the working conditions and terrain. Avoid sudden stops, starts, and turns.
• Try to go around obstacles, rather than over or through them.
• Keep the bucket as low as possible when travelling or turning. A skid steer becomes less stable the higher the loader arms are raised.
• Never try to operate the steering levers or any other hydraulic controls while standing outside the cab. Because of the hydrostatic drive, the skid steer will respond instantly when the levers are engaged.
• Never use a skid steer as a work platform or for carrying workers—it’s against the law.
• Make sure any attachments you use are rated for your machine. Remember that an attachment will reduce your load capacity.
 • Always turn your machine off before changing attachments.
 • Make sure that the attachment locking devices are engaged, even if you are switching attachments for only a few minutes. If an attachment is not locked, it could break free and roll back down the loader arms.
 • It’s good practice to use hearing protection when operating a skid steer.

Get our winter driving booklet
Motor vehicle incidents increase at a chilling pace in winter. Many drivers don’t understand winter driving and fail to consider the hazardous conditions created by winter weather.

Whether you drive a commercial vehicle or a passenger vehicle, it’s important to be aware of the driving hazards caused by winter weather.

Your Guide To Safe, Efficient, Winter Driving (B010) is a pocket-sized booklet that provides information on safe driving during the hazardous winter months. Order or download your copy by visiting the Products section at ihsa.ca

Ice roads safety manual—Now available in French!
In Ontario, ice roads provide temporary access to communities, worksites, and recreational areas. However, working, travelling, and parking on the frozen surface of ponds, lakes, and rivers can be a hazardous activity.

Last year, IHSA made Best Practices for Building and Working Safely on Ice Covers in Ontario (IHSA029) available as a free download from our website. This year, we’re pleased to offer it in French. Pratiques exemplaires de construction et de travail sécuritaire sur les couches de glace en Ontario (IHSA029F) is free to download from the Products section at ihsa.ca

Although developed to protect the health and safety of workers, it may also be helpful to recreational users who are travelling over ice covers or going ice fishing.
IHSA Annual General Meeting

IHSA’s fourth Annual General Meeting took place on September 17 at IHSA’s main headquarters at the Centre for Health & Safety Innovation in Mississauga (CHSI).

Along with the formal business meeting, the event provided the opportunity to hand over some well-deserved awards to individuals and firms that have made great health and safety strides in the past year. This included ZeroQuest® and President’s Awards, Transportation Achievement Awards, and Certificate of Recognition (COR™) plaques, as well as the Gil Samson Award, the John Beck Award, and the Roy A Phinnemore Award.

IHSA Vice Presidents Paul Casey and Ken Rayner spoke to the more than 150 guests about some of IHSA’s own initiatives—working to achieve COR™ as well as striving to integrate more measurement and evaluation into IHSA courses and programs.

The IHSA Board of Directors was elected for the coming term. The following are the members of the new board:

- Mike Archambault—Aecon (Toronto)
- Jack Dowding—IBEW Construction Council of Ontario (Mississauga)
- Michael Frolick—Transpro Freight Systems Ltd. (Milton)
- Dean Gatien—PowerTel Utilities Contractors (Whitefish)
- Tim Holdaway—Midland Transport Limited (Brampton)
- Darrin Husack—Con-Drain (Concord)
- Bob Kerr—Brick & Allied Craft Union of Canada (Toronto)
- Tom Lachance—Tesc Contracting (Sudbury)
- Claudio Mazzotta—Drywall Acoustic Lathing & Insulation, Local 675 (Woodbridge)
- Brian MacDonald—Teamsters (Ottawa)
- Len Poirier—Canadian Auto Workers Union (Kitchener)
- Joe Redshaw—International Union of Operating Engineers (Oakville)
- Don Schultz—Millwrights District Council (Toronto)
- Mark Turney—Veridian (Ajax)
- Joe Pessoa—Toronto Hydro, CUPE Local One

Cruickshank Construction Ltd. (left) and Brantford Power Inc. (right) were just two of the firms recognized this year.
ZeroQuest® is a program that evaluates a firm’s health and safety management system and encourages continual development and improvement. The program is broken down into four categories: Commitment, Effort, Outcomes, and Sustainability. Firms are recognized as they achieve each level. Since ZeroQuest was introduced in 2005, 220 firms have participated in the program.

Outcomes I
- Brantford Power Inc.
- Cambridge & North Dumfries Hydro
- Riggs Distler

Outcomes II
- Wasaga Resources
- Aecon Utilities

Outcomes III
- Burlington Hydro Distribution Inc.
- Woodstock Hydro

Outcomes IV
- Oshawa PUC

Sustainability
- Entegrus
- Peterborough Utilities Group

Transportation Achievement Awards

The Transportation Achievement Awards are given to member firms that have consistently operated with a frequency and cost-rate factor below the rate group average for three consecutive years. These awards are based on the firm’s record for 2011, 2012, and 2013.

Category 1
100,000 to 250,000 person hours—30 per cent below rate group average in frequency and cost rate
- Robinson Transport
- Thompson Terminals Ltd.
- Huron Services Group Ltd.
- Oxford Milkway Transport Co-operative
- CEVA Logistics Canada Ltd.
- DHL Express (Canada) Ltd.
- LaFarge Canada Inc.—Ready Mix Division
- St. Marys Cement Inc. (Canada)—Canada Building Materials
- Cruickshank Construction Ltd.
- J F Kitching & Son Ltd.

Category 2
250,000 to 500,000 person hours—25 per cent below rate group average in frequency and cost rate
- APPS Cartage Inc.
- Day & Ross Inc.—Sameday Worldwide
- Newalta Corporation—Industrial Services
- Aevitas Inc.
- ERB International Ltd.
- Syncreon Canada Inc.

Category 3
500,000 to 1,000,000 person hours—20 per cent below rate group average in frequency and cost rate
- Gerdau Ameristeel Corp.—Whitby Facility
- Ryder Truck Rental Canada Ltd.—Ryder Integrated Logistics
- Day & Ross Inc.
- Kuehne & Nagel
- Pantene Building Supplies Ltd.
- Midland Transport Ltd.
- Contrans Services LP

Category 4
Over 1,000,000 person hours—15 per cent below rate group average in frequency and cost rate
- United Parcel Service Canada Inc.
- SCM Supply Chain Management Inc.
- Greater Toronto Airport Authority
- Dufferin Concrete & Ontario Redimix
- Division Holcim (Canada) Inc.
COR™ aims to promote workplace behaviour and practices that lead to improved performance. It is currently being used across Canada and is a pre-qualification requirement for many contractors working in Ontario and other provinces and on public- and private-sector projects. IHSA now has close to 400 firms actively working towards COR™ certification.

- AECOM Canada Ltd.
- Ball Construction Inc.
- Buttcon Limited
- Chemfab Industries Inc.
- Cintas Canada Limited
- Deep Foundations Contractors Inc.
- Dufferin Construction Company
- Dynamic Industrial Services Inc.
- Hydro One Brampton Networks Inc.
- Insultek (Sarnia) Inc.
- Ledcor Construction Limited
- P & C General Contracting Ltd.
- Powerline Plus Ltd.
- Siemens Canada Ltd.—Energy Wind Power Projects
- Sierra Construction (Woodstock) Limited
- Sterling Crane Division
- TESC Contracting Company Limited
- Timbro Design Build Contractors
- Walsh Canada
- Direct Energy Business Services Limited
- Eastern Construction Company Limited
- KE Electrical Ltd.
- Kel-Gor Limited
- Hydro One Networks
- LVM Inc.
- Pro-Gen (Thunder Bay) Inc.
- SAFWAY Services Canada, Inc.
- Signature Contractors Windsor Inc.
- SNC Lavalin Construction (Ontario) Ltd
- Weldco-Beales Mfg. Ontario Ltd
- Wellington Organix Inc.
- Westlake Industries

IHSA President’s Awards

The first President’s Award was presented in 1976. The award represents consecutive years of performance without a lost-time injury and is based on milestones of 250,000 hours. It is open to any firm that is a member of IHSA.

- El-Con Construction - 250,000 hrs
- London Hydro - 250,000 hrs
- Guelph Hydro - 500,000 hrs
- Oakville Hydro Distribution Inc. - 500,000 hrs
- Vector Construction - 500,000 hrs
- G-Tel - 250,000, 500,000, and 750,000 hrs
- Veridian - 250,000, 500,000, and 750,000 hrs
- Enersource - 1.75 million hrs
- Toronto Hydro Electric System Ltd. - 3.5 million hrs
Gil Samson Award

The Gil Samson Award, first presented in 1988, is named after a former General Manager of the Construction Safety Association (CSAO) of Ontario who played a major role in creating the network of Labour-Management Health and Safety Committees. The award recognizes extraordinary achievements by a Labour-Management Committee. A substantial donation from past CSAO President, Don Gaffney, helped to make this award possible.

The Gil Samson Award honours the labour-management committee that has contributed to the advancement of occupational health and safety by virtue of a program, publication, or other accomplishment.

The 2013 Gil Samson Award was presented to the Ottawa Regional Labour-Management Health & Safety Committee for its significant contributions to the advancement of occupational health and safety. In 2013 the committee participated in a number of projects dealing with youth safety, young worker safety, smoking cessation on construction sites, Day of Mourning activities, and other important endeavours that will go a long way to improving safety in the region for generations to come.

Charles J. Tallon Award

The Charles J. Tallon Award is named in honour of Chuck Tallon, a former General Manager of E&USA. It was created in 1999 to recognize individuals who demonstrate outstanding enthusiasm, integrity, and lifelong commitment to the ongoing pursuit of excellence in the field of occupational health and safety.

This year’s Charles J. Tallon Award was awarded to retired IHSA staff member Rick Stahlbaum.

Over his 25-year career in health and safety, Rick held a variety of positions with E&USA and IHSA, ranging from field consultant to the Vice President of High-Risk Activity Training and Operations. In 2002, Rick was selected to manage a team of subject-matter experts from E&USA and Hydro One in order to unify the two utility rule books used for working on electrical transmission or outdoor distribution systems. Against all odds, the harmonized Electrical Utility Safety Rules book (EUSR) was published and distributed in August of 2004. Rick also led the 2009 and 2014 EUSR revisions.

One of his most significant contributions was at IHSA as the Vice President responsible for revenue generation. Rick established a service-delivery model that took IHSA from a $3.1 million deficit to three consecutive years of surplus.

John M. Beck Award

The John M. Beck Award is named after the Chairman and Chief Executive Officer of Aecon Group Inc. Generously sponsored by Aecon, the award is presented to a project-based joint health and safety committee in Ontario construction. It recognizes extraordinary leadership, initiative, creativity, and innovation in addressing health and safety.

The John M. Beck Award was awarded to the NOVA Corunna Cracker Revamp Project Health & Safety Committee. This committee was created as part of a larger project to promote health and safety on the job. Throughout this project, the committee has demonstrated creativity, leadership, innovation, and initiative.

Roy A. Phinnemore Award

The Roy A. Phinnemore Award is named in honour of a past CSAO Executive Director whose dedication to construction safety inspired others during CSAO’s formative years.

This year’s Roy A. Phinnemore Award was presented to Keith Winslow for his significant contributions to improving health and safety in Ontario’s construction industry.

In a career that spans more than 20 years in health and safety leadership, Keith has demonstrated a passion for worker safety in the Algoma district across a number of industries. In every role, his fundamental commitment to workplace health and safety has raised the bar, inspiring other workers, supervisors, and companies to improve their safety efforts, policies, and programs.
Mobile devices in the workplace:
Are they a help or a hazard?

It may be hard to admit, but we’d be lost without our mobile devices. They’ve become an essential tool for communication and an instant resource for information. When they are used to improve workplace communication and to find work-related information, they can help improve safety on a worksite. However, they can also become a workplace hazard, taking your attention away from the task at hand and the dangers around you.

Distracted driving
Distracted driving is the number-one killer on Ontario roads. In 2013 it was responsible for more deaths than impaired driving or speeding. Distracted driving means talking or texting on a hand-held device while you’re behind the wheel or looking at display screens, such as laptops, MP3 players, or DVD players, that are unrelated to driving.

Most of us drive to and from work with our mobile devices within arm’s reach. Whether it’s a personal or work-related call or text, it can be difficult to resist the temptation to answer or take a look. But each time you read a text or an email, you’re taking your eyes off the road for at least four seconds. And studies have shown that drivers who take their eyes off the road for more than two seconds double their risk of having a crash.'

Although using a hands-free device is permitted in Ontario, it is against the law to physically interact or manipulate the device by dialing or scrolling through contacts, or even by manually programming a GPS device. In fact, there is no conclusive evidence that using a hands-free device while driving is safer than using a hand-held device.‡ So, the best practice is to let all phone calls go directly to your voicemail and not to look at or answer any texts or emails until you’ve finished driving. If you must send a reply or make a call, pull over to a safe spot off the road and bring your vehicle to a stop.

Mobile devices on worksites
Working on a busy jobsite or operating tools and heavy machinery requires your full concentration. Inattention or distraction can result in injury to yourself, injury to others, damage to property, or even death. If you’re looking at your emails or having a phone conversation, your mind is on something other than your work or your safety. You may even find yourself removing your safety glasses, gloves, hearing protection, or hard hat in order to use your device.

To protect against the distractions caused by the use of mobile devices on worksites, follow the guidelines below:

• Never use your mobile device on a worksite unless you have permission from your supervisor. That includes talking, texting, emailing, playing games, etc.
Never use your device while you are doing anything that requires your full attention, such as operating a tool, machinery, equipment, or vehicle, or receiving work instructions or safety information.

Wait until your lunch or rest break to use your device for personal calls or activities. But only use it in specially designated safe work areas, such as a site trailer or break room.

Never use a mobile device near flammable fumes or liquid, or when you’re in a flammable environment.

Turn off your mobile device completely when you’re working. The ringer may startle you or a co-worker.

Let your calls go straight to voicemail when you’re working. You can listen to them at a more convenient time.

To reduce the temptation to use your device on the worksite, keep it in your vehicle or store it in a lockbox at the site trailer while you’re working.

If an urgent personal matter requires you to keep in touch with someone, such as a family member, tell your supervisor and work out a plan that lets you do it safely.

If you need to access important work-related information on your device, stop working, inform your supervisor, and move to a safe work area.

If you’re a supervisor, communication is part of your job. However, you should not make or take calls while you’re directing work activities on the site. Limit it to the site trailer, site office, or other designated safe work area away from general work activities.

If you’re an employer, you must ensure every worker has ready access to a telephone or other system of two-way communication in the event of an emergency (O. Reg. 213/91, s.18). However, a policy on the appropriate use of cell phones or mobile devices should be part of your company’s health and safety program.

If you’re a worker, make sure you know what your company’s rules are, and follow them. If your company does not have a policy, encourage them to develop one. Remember: It’s not just you. Your co-workers can also become distracted, putting your life in danger.

You can find a sample cell phone policy and a sample mobile device policy on the ihsa.ca website in the Policy and Program Templates section under Company Health and Safety Rules.

1 Information provided by the Ontario Provincial Police (OPP).
Sooner or later, we all need a ladder. Some workers use them only occasionally, but others have to climb or work from a ladder many times during the day. In either case, ladders can be dangerous, and the misuse of ladders causes many injuries and deaths every year.

Using ladders the wrong way can result in long-term musculoskeletal disorders, contact with live wires, or falls. The consequences can range from minor mishaps to death. To reduce injuries and incidents, IHSA recommends you establish a proper ladder safety program that includes training and hazard awareness.

Types of ladders

Ladders are rated by the Canadian Standards Association; its standard for portable ladders is CSA Z11. Here are the five classifications for ladders.

<table>
<thead>
<tr>
<th>Duty Rating</th>
<th>Intended Use</th>
<th>Ladder Type</th>
<th>Working Load (kg/lbs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Special Duty</td>
<td>Construction/Industrial</td>
<td>IAA</td>
<td>170/375</td>
</tr>
<tr>
<td>Extra Heavy Duty</td>
<td>Construction/Industrial</td>
<td>IA</td>
<td>136/300</td>
</tr>
<tr>
<td>Heavy Duty</td>
<td>Construction/Industrial</td>
<td>I</td>
<td>113/250</td>
</tr>
<tr>
<td>Medium Duty</td>
<td>Tradesman/Farm</td>
<td>2</td>
<td>102/225</td>
</tr>
<tr>
<td>Light Duty</td>
<td>Household</td>
<td>3</td>
<td>91/200</td>
</tr>
</tbody>
</table>

Most ladders are made of wood, fibreglass, or aluminum. Ladders also come in a variety of designs, each intended for a particular use and set-up. The different designs are not interchangeable, and the wrong one should not be used simply because no other ladders are available.

Wooden ladders

A wooden ladder, when it is dry, is not a good conductor of electricity. But wood is very susceptible to drying and splitting with age. Therefore, wooden ladders need some type of protective finish. A clear finish should be used so the condition of the ladder can be seen. Paint can hide various defects.

Fibreglass ladders

Ladders made of fibreglass are recommended for all electrical work. However, if they are left outside, for example, on a service vehicle, the fibreglass may suffer UV damage from sunlight, which will need to be repaired. Inspect these ladders according to the manufacturer’s recommendations.

Aluminum ladders

Aluminum ladders conduct electricity. Never use aluminum ladders where contact with energized equipment is possible.

What the law says

Employers are required by Ontario’s Occupational Health and Safety Act to take every reasonable precaution to protect their workers from hazards, including those related to ladders. Employers must provide information and instruction, and must ensure that workers use the ladder properly and that the ladder is designed, built, and maintained so as not to endanger a worker. They must also make sure that it can withstand any load it may
be subjected to. Employers, supervisors, and workers can be prosecuted for not complying with the law.

Training
An important part of a ladder safety program is training. Proper training is required by the Occupational Health and Safety Act and needs to take place before any ladder is used. However, one-time training is not enough. IHSA recommends that all workplaces establish a re-training program, requiring trained workers and supervisors to update their knowledge within a length of time established by the employer.

Transporting ladders
When a ladder is being transported on a roof rack, it must be fastened securely. Use approved tie-downs that will hold it firmly in place. This will prevent damage from road shock and stop the ladder from falling off the vehicle.

Ladder inspection
It is important when inspecting ladders to look beyond the obvious. The following procedures will help to reveal problem areas. In addition, it must be noted that any repair to a ladder must be done by the manufacturer. That will ensure that the strength of the ladder continues to meet the CSA standard.

Stepladder inspection
- **Copolymer top**—Inspect for cracks or dents; make sure that all rivets, nuts, and bolts are present and tight.
- **Pail tray**—Make sure it moves freely, and all fasteners are present and tight.
- **Spreader arms**—Make sure they move freely and lock tightly, and all fasteners are present and tight.
- **All steps, horizontal braces, and step braces**—Make sure they are free of damage, and all fasteners are present and tight.
- **Front and rear side rails**—Inspect for cracks, dents, bends, or any other blemishes.
- **Safety feet**—Inspect for worn rubber pads and loose rivets, nuts, or bolts.

Extension ladder inspection
- **Slide guides**—Inspect for cracks, chips, or wear. Make sure that all fasteners are present and tight.
- **Rope**—Make sure it is tight and not frayed or knotted, and that the pulley is free from wear and firmly fastened.
- **Base and fly sections**—Make sure they are straight and free from damage and warp.
- **All rungs**—Inspect for dents and cracks; make sure they are tight and do not rotate.
- **Safety feet**—Inspect for worn rubber pads and loose rivets, nuts, and bolts.
- **End caps**—They should all be tight and free from cracks, chips, and wear.
- **Side rails of base and fly**—Make sure there are no dents, cracks, or other blemishes.
- **Gravity locks**—Make sure they pivot freely, that fingers are intact and free from wear, and that all fasteners are present and tight.

Resources
IHSA has produced a document called *Ladder Use in Construction Guideline*. It has been prepared to help workplace parties understand their obligations under the Occupational Health and Safety Act and its regulations. It is available for viewing at ihsa.ca/news_events. Employers and supervisors should refer to this document when setting policies for ladder use.
Health and safety education is nothing new in Ontario. In fact, IHSA’s efforts as a leader in health and safety education have been built on a century of high-risk hazard education and the basic principles of health and safety now entrenched in provincial law.

Since 1914, the Electrical Utility Safety Rules (EUSR) has been the foundation of health and safety education in the electrical and utilities industry. It was created through the Electrical Employers’ Association of Ontario and maintained by the Electrical and Utilities Safety Association of Ontario, one of IHSA’s legacy organizations.

Since its first publication, the EUSR has laid out a set of rules that are the governing principles of safe work for electrical workers who work on or near electrical distribution or transmission systems in Ontario. These workers include powerline technicians, utility arborists, and high-voltage electrical workers.

This set of rules has changed over its century of existence, adapting to meet the needs of workers and reflecting changes in technology and work methods. However, the fundamental principles have rarely deviated. They are a reflection of the knowledge and experience of the membership and others in the industry to identify, eliminate, and control hazards and prevent injuries and illnesses.

This foundation document helped, in part, to form future safety-related publications in Ontario such as the Occupational Health and Safety Act. For example, rule 9 from the 1914 document states: “Workmen should refuse to do any work which they believe themselves unable to perform safely.”

Another example is rule 4, which required high-hazard work to be performed by competent workers trained in safe work methods: “All work in which a hazard exists should be under the supervision of an experienced and competent workman.”

While we think these are modern ideas, it is evident that while work was inherently dangerous a century ago and injury and fatality a commonplace occurrence, there were some that knew safe work environments were everyone’s responsibility.

In 2014 the latest edition of the EUSR was published by IHSA. The rule book has been updated to once again provide appropriate safety guidance for the times.

To help announce the changes that were made to the EUSR and to better transfer knowledge on how to use the rules, IHSA has created a one-day EUSR training program. A description of this course is available on the ihsa.ca website. You can get your copy of the 2014 edition of Electrical Utility Safety Rules (RB-ELEC) by visiting ihsa.ca/products
OTM Book 7 has changed
Do you know what the changes are?

The *Ontario Traffic Manual Book 7 (Temporary Conditions)* provides the basic requirements for traffic control in work zones during roadway or utility construction and maintenance on or beside public highways. Public highways include ramps as well as municipal roads and streets. There are two versions that are available to purchase from Publications Ontario—the Office Edition and the Field Edition.

Firms that are working for provincial, municipal, and private road authorities need a good working knowledge of Book 7. That’s also true for utilities, contractors, and others who have approval to work on public roadways.

Revised in January 2014, the new version OTM’s Book 7 has been re-formatted so that it is more user friendly. It has a new structure that recognizes there are a wide range of people who use the book, that they do a wide variety of tasks, and that they have different levels of knowledge.

While there are no new legislative requirements, the revised format includes new information about paid duty officers, bicycles as vehicles, roundabouts, traffic control for unplanned events, and substantial changes to the layout for traffic control persons (TCPs).

IHSA has posted a comparison chart on ihsa.ca that provides a section-by-section overview of all differences between the old and new versions of Book 7. In addition, we have also posted a Powerpoint presentation from the Ministry of Transportation outlining the key points that have changed. These documents can be downloaded from the News and Events section or the Traffic Control topic page.
Here are a few examples of what some of the Labour-Management Committees are currently working on to mitigate the risks of high-hazard activities.

Technical manuals and best practices

The Roofers Committee wrote a series of four health and safety pamphlets, two of which deal with working at heights: Roofers Safety Pamphlet (IHSA010) and Hiring a Roofing Contractor (IHSA023). They also wrote a Low Slope Roofing Manual (M070). These publications are available to order or download at ihsa.ca.

In addition, a sub-committee is finalizing a guideline for working safely on and in proximity to photovoltaic systems (solar panels).

The Hamilton Committee recently created a sample health and safety policy and safety talk on the distraction caused by using cell phones and other mobile devices while on a worksite. The sample policy and safety talk are available to download on ihsa.ca, and much of the information is included in the “Mobile devices in the workplace” article on pages 18-19.

The Building Code Working Group has been working diligently on a formal submission to request changes to the Ontario Building Code that would help protect workers from falling from heights. These changes are:

- Lowering the requirement for permanent roof anchors from 8 m to 3 m in order to meet the requirements of section 26 of the Construction Regulation (O. Reg. 213/91)
- Raising the height and strength requirements of parapet walls to act as permanent guardrails

Every year, more than 800 people volunteer their time to help make Ontario’s high-hazard workplaces safer. They work all over the province and in many trades and sectors in an effort to make a difference. In fact, they are the only volunteer body of their kind in North America. These individuals make up IHSA's Labour-Management Network.

The Network consists of the Provincial Labour-Management Health and Safety Committee for Construction, the Provincial Labour-Management Safety Committee for Electrical and Utilities, 16 regional committees, and 26 construction trade or sector committees.

The two provincial committees often take a province-wide or industry perspective. Both committees are recognized under Section 21 of the Occupational Health and Safety Act as advisors to the Minister of Labour. These committees have a long history of bringing together representatives of government, labour, and management to improve workplace safety in Ontario’s construction, electrical, and utility sectors. Through them, members of the Labour-Management Network participate in developing, reviewing, and commenting on provincial regulations, industry standards, guidelines, and best practices.

Creating and reviewing technical documents, regulations, and standards is just one of the ways the Network helps to improve health and safety in the construction and utility industries. The committees are also very active in community outreach. They raise awareness of health and safety among local businesses with workers who perform high-hazard activities, such as working at heights, working with high-voltage electricity, and working with dangerous goods. With support from IHSA committee members, they often collaborate with employer associations, colleges and universities, and other groups to spread the safety message.

IHSA’s Labour-Management Network

aims to make high-hazard work safer
• Installing permanent ladder hooks on buildings to help secure portable ladders
• Using guardrails or screens to prevent workers from falling through skylights.

The Service Sector Committee has developed a Service Sector Web Tool for those involved in service, repair, and retrofit work. Located at ihsa.ca/service_sector, it provides free information about responsibilities, liabilities, hazards, and proper procedures for various types of work commonly encountered in the service sector. It’s a key resource for owners, property managers, and contractors.

The Boilermakers Committee has produced a detailed Boilermakers Health and Safety Manual (M074), which deals with high-hazard activities such as working at heights and working in confined spaces. The manual will be available in early 2015.

The Mining and Aggregates Sector Working Group has completed an update of the Mining and Aggregates Safe Work Practices. Safe Work Practices for the Aggregates Industry (M075) covers topics such as fall prevention, explosives and blasting, and operating bulldozers and haulage trucks.

The Refrigeration and Air-Conditioning Committee has developed a trade-specific manual that covers the hazards associated with working at heights, electrical safety, and driving service vehicles. It is expected to be printed in early 2015. In addition, they successfully appealed for changes to the Canadian Electrical Code (CEC) to protect mechanics servicing rooftop HVAC units, and they continue to press for more changes.

The ECAO/IBEW Committee is working on updating their pocket-sized health and safety manual (M010). A new version will be available in the new year.

The Elevator/Escalator Committee is near completion of an advisory for working in proximity to transmission towers, which can be used by all trades.

The Sprinkler Committee has been instrumental in effecting changes to the upcoming CSA standard on mobile elevating work platforms.

The Concrete Floor Committee has been working on a manual about high-hazard activities in their trade.

Training and awareness

The Timmins Committee is planning their next health and safety conference. They have been doing this for the past few years with great success. The event brings together construction labour and management in the Timmins region for information sessions on high-hazard activities such as working at heights.

The Northwestern Committee is in the final stages of getting a distracted driving awareness campaign off the ground. The committee members worked with local sponsors and IHSA to create the campaign, which will be featured on Thunder Bay city buses.

The Insulators Committee presented a Health and Safety Training Day for insulators. The event offered awareness training on the hazards specific to insulators. Over the past two years, more than 1,600 workers have taken the training.

The London Committee participated in Fanshawe College’s Health and Safety Day. The goal was to reach young workers who are considering a career in construction. Committee members provided information on high-hazard activities to some 700 students.

The Christian Labour Association of Canada (CLAC) Committee organized a health and safety seminar that focused on working at heights. The seminar included awareness training and practical demonstrations of the effects a fall has on equipment such as lanyards, energy absorbers, and self-retracting lifelines.

The Toronto Committee conducted a hands-on fall protection training demonstration at Voyager Court (pictured below).

Get involved

The activities outlined here represent just some of the tireless efforts by the dedicated volunteers of IHSA’s Labour-Management Network. If you want to become a part of protecting the health and safety of workers in Ontario, simply send an email to lmadmin@ihsa.ca and let them know. You can join a committee or simply voice your opinion. If you have an idea or know of an opportunity for them to help spread the safety message, they’d be glad to hear from you. To learn more about the Network, visit the Committees section of ihsa.ca.
Enforcement blitzes are something the Ministry of Labour (MOL) does as part of its Safe at Work Ontario strategy for enforcing the Occupational Health and Safety Act. During a blitz, inspectors target specific hazards during their visits to workplaces. Earlier this year, MOL inspectors conducted blitzes on warehouses, small businesses, and excavations. Here’s what they found.

Warehouse blitz
In February and March, MOL inspectors visited warehouses and retail establishments with storage areas as part of an enforcement blitz. The goal of the blitz was to raise awareness of the common hazards in warehouses and to promote compliance with legislation and best practices. During these visits, inspectors paid particular attention to

- lifting devices and forklifts
- racking and storage systems
- loading dock areas
- mezzanine floors
- hazards that could lead to slips, trips, falls, or musculoskeletal disorders (MSDs).

Over the course of the two-month blitz, inspectors made 1,425 visits to 1,096 workplaces. They issued 3,990 orders, of which 134 were stop work orders. The most frequently issued orders were for an employer’s failure to

- ensure equipment, materials, and protective devices were maintained in good condition
- ensure a lifting device was examined by a competent person
- keep floors free of obstructions, hazards, and accumulations or debris, ice, or snow
- ensure materials were transported, placed, or stored so that they would not tip over or endanger a worker’s safety when they were removed.

Small Business blitz
The Small Business blitz began on April 1, 2013, and continued until March 31, 2014. During that time, MOL inspectors visited businesses with fewer than 20 employees. Most of them were businesses that had registered with the Workplace Safety and Insurance Board (WSIB) but had had no prior contact with WSIB or MOL. The goal of the blitz was to encourage employers to identify and control hazards, support vulnerable workers by raising awareness of workers’ rights, and raise awareness of the internal responsibility system.

During workplace visits, MOL inspectors checked that

- the core elements of the internal responsibility system were established, implemented, and maintained
- employers had identified hazards and controlled them
- non-compliance with the Occupational Health and Safety Act and its regulations were being remedied
- vulnerable workers were aware of their rights
- workplace parties were being directed to resources in the health and safety system.

During the year-long blitz, MOL inspectors made 1,589 visits to 1,190 small businesses. They issued 4,014 orders, which included 50 stop work orders. An order was issued most often because the employer had failed

- to post the Occupational Health and Safety Act
- to take reasonable precautions to protect workers’ health and safety
- to prepare a health and safety policy and maintain a program to implement the policy.

Excavation blitz
This blitz, which ran throughout May, targeted excavation hazards at construction projects. It included excavations dug to install utilities, excavations for building foundations, and trenches dug along the right of way on roads. The goal was to raise awareness of the dangers of excavations.
During their site visits, MOL inspectors focused on
• support for excavation walls
• location of utilities
• safety measures to prevent slips, trips, and falls.

During this one-month enforcement blitz, MOL inspectors made 1,094 visits to 957 workplaces. They issued 2,191 orders, of which 186 were stop work orders. Seventy-five per cent of the orders were issued under the Regulation for Construction Projects. Orders were issued most frequently because the employer had not ensured that
• excavations were in compliance with proper support systems
• workers were wearing protective headwear
• adequate emergency procedures were in place.

See the full reports
For each enforcement blitz, the MOL publishes the results on its website at labour.gov.on.ca. Go there to view the complete reports.

New training requirements for working at heights

Falls continue to plague Ontario’s worksites. In 2013, 10 workers died in fall-related incidents on construction projects and falls were responsible for 25% of lost-time injuries (LTIs) for IHSA member firms.

The Ontario Ministry of Labour (MOL) has announced changes to Regulation 297/13: Occupational Health and Safety Awareness and Training that will come into effect on April 1, 2015. As of that date, workers on construction sites will need to complete a working at heights training program that has been approved by the Chief Prevention Officer before they can work at heights. This training will be valid for three years from the date of completion.

Workers who have already received training will have two years (until April 1, 2017) to complete an approved working at heights training program. As of January 5, 2015, there are no approved training programs, but anyone who is exposed to fall hazards on the job is legally required to have fall protection training.

The Working at Heights Training Program Standard and Working at Heights Training Provider Standard laid out minimum learning outcomes for working at heights training programs and the requirements for approved training providers. Reducing working at heights injuries and fatalities through standardized training was a key recommendation of the Expert Advisory Panel on Occupational Health and Safety in 2010. The Ontario government committed to implementing all of the recommendations proposed by the Expert Advisory Panel.

IHSA will be releasing additional information on the new standards and how IHSA’s Working at Heights—Fundamentals of Fall Prevention training will fit into the future of fall-related training in Ontario.

For more information, visit the MOL’s Working at Heights Training page at labour.gov.on.ca or download the Update on Working at Heights Training in Ontario presentation available at ihsa.ca.
Safety speaks many languages.

Working at Heights training is now available in 10 more languages

<table>
<thead>
<tr>
<th>Language</th>
<th>Dates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cantonese</td>
<td>January 8, March 2, May 4</td>
</tr>
<tr>
<td>Italian</td>
<td>January 16, March 16, May 18</td>
</tr>
<tr>
<td>Polish</td>
<td>January 26, March 30, May 25</td>
</tr>
<tr>
<td>Russian</td>
<td>February 9, April 13, June 8</td>
</tr>
<tr>
<td>Spanish</td>
<td>February 23, April 24, June 22</td>
</tr>
<tr>
<td>Croatian</td>
<td>January 12, March 9, May 11</td>
</tr>
<tr>
<td>Mandarin</td>
<td>January 19, March 23, May 22</td>
</tr>
<tr>
<td>Portuguese</td>
<td>February 2, April 6, June 1</td>
</tr>
<tr>
<td>Serbian</td>
<td>February 16, April 20, June 15</td>
</tr>
<tr>
<td>Turkish</td>
<td>February 27, April 27, June 29</td>
</tr>
</tbody>
</table>

Working at heights training is mandatory in Ontario for anyone who is exposed to fall hazards during the course of their work. To make this training available to all workers, IHSA is now offering its *Working at Heights* course in 10 additional languages.

IHSA’s one-day course addresses the basic fall prevention information that workers need to know to work safely in areas where they may be exposed to fall hazards. Upon completion, participants will be able to recognize common fall hazards, will know how to use various types of equipment to control those hazards, and will understand the laws and regulations related to working at heights.

Get effective *Working at Heights* training in the language that is best understood by your workers. For more information, call 905-625-0100 or 1-800-263-5024.

Program Fees

$100 per participant for IHSA members.